3.373 \(\int \frac{x (d+e x)^n}{(a+c x^2)^2} \, dx\)

Optimal. Leaf size=279 \[ \frac{e n \left (\sqrt{-a} e+\sqrt{c} d\right ) (d+e x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{\sqrt{c} (d+e x)}{\sqrt{c} d-\sqrt{-a} e}\right )}{4 \sqrt{-a} \sqrt{c} (n+1) \left (\sqrt{c} d-\sqrt{-a} e\right ) \left (a e^2+c d^2\right )}+\frac{e n \left (\sqrt{-a} \sqrt{c} d+a e\right ) (d+e x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}\right )}{4 a \sqrt{c} (n+1) \left (\sqrt{-a} e+\sqrt{c} d\right ) \left (a e^2+c d^2\right )}-\frac{(d-e x) (d+e x)^{n+1}}{2 \left (a+c x^2\right ) \left (a e^2+c d^2\right )} \]

[Out]

-((d - e*x)*(d + e*x)^(1 + n))/(2*(c*d^2 + a*e^2)*(a + c*x^2)) + (e*(Sqrt[c]*d + Sqrt[-a]*e)*n*(d + e*x)^(1 +
n)*Hypergeometric2F1[1, 1 + n, 2 + n, (Sqrt[c]*(d + e*x))/(Sqrt[c]*d - Sqrt[-a]*e)])/(4*Sqrt[-a]*Sqrt[c]*(Sqrt
[c]*d - Sqrt[-a]*e)*(c*d^2 + a*e^2)*(1 + n)) + (e*(Sqrt[-a]*Sqrt[c]*d + a*e)*n*(d + e*x)^(1 + n)*Hypergeometri
c2F1[1, 1 + n, 2 + n, (Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)])/(4*a*Sqrt[c]*(Sqrt[c]*d + Sqrt[-a]*e)*(c*
d^2 + a*e^2)*(1 + n))

________________________________________________________________________________________

Rubi [A]  time = 0.296966, antiderivative size = 279, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {823, 831, 68} \[ \frac{e n \left (\sqrt{-a} e+\sqrt{c} d\right ) (d+e x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{\sqrt{c} (d+e x)}{\sqrt{c} d-\sqrt{-a} e}\right )}{4 \sqrt{-a} \sqrt{c} (n+1) \left (\sqrt{c} d-\sqrt{-a} e\right ) \left (a e^2+c d^2\right )}+\frac{e n \left (\sqrt{-a} \sqrt{c} d+a e\right ) (d+e x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}\right )}{4 a \sqrt{c} (n+1) \left (\sqrt{-a} e+\sqrt{c} d\right ) \left (a e^2+c d^2\right )}-\frac{(d-e x) (d+e x)^{n+1}}{2 \left (a+c x^2\right ) \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(x*(d + e*x)^n)/(a + c*x^2)^2,x]

[Out]

-((d - e*x)*(d + e*x)^(1 + n))/(2*(c*d^2 + a*e^2)*(a + c*x^2)) + (e*(Sqrt[c]*d + Sqrt[-a]*e)*n*(d + e*x)^(1 +
n)*Hypergeometric2F1[1, 1 + n, 2 + n, (Sqrt[c]*(d + e*x))/(Sqrt[c]*d - Sqrt[-a]*e)])/(4*Sqrt[-a]*Sqrt[c]*(Sqrt
[c]*d - Sqrt[-a]*e)*(c*d^2 + a*e^2)*(1 + n)) + (e*(Sqrt[-a]*Sqrt[c]*d + a*e)*n*(d + e*x)^(1 + n)*Hypergeometri
c2F1[1, 1 + n, 2 + n, (Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)])/(4*a*Sqrt[c]*(Sqrt[c]*d + Sqrt[-a]*e)*(c*
d^2 + a*e^2)*(1 + n))

Rule 823

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(
m + 1)*(f*a*c*e - a*g*c*d + c*(c*d*f + a*e*g)*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), x] + Di
st[1/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Simp[f*(c^2*d^2*(2*p + 3) + a*c*e^2*
(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f + a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 831

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(
d + e*x)^m, (f + g*x)/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !Ration
alQ[m]

Rule 68

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((b*c - a*d)^n*(a + b*x)^(m + 1)*Hype
rgeometric2F1[-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b^(n + 1)*(m + 1)), x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rubi steps

\begin{align*} \int \frac{x (d+e x)^n}{\left (a+c x^2\right )^2} \, dx &=-\frac{(d-e x) (d+e x)^{1+n}}{2 \left (c d^2+a e^2\right ) \left (a+c x^2\right )}-\frac{\int \frac{(d+e x)^n \left (-a c d e n+a c e^2 n x\right )}{a+c x^2} \, dx}{2 a c \left (c d^2+a e^2\right )}\\ &=-\frac{(d-e x) (d+e x)^{1+n}}{2 \left (c d^2+a e^2\right ) \left (a+c x^2\right )}-\frac{\int \left (\frac{\left (-\sqrt{-a} a c d e n-a^2 \sqrt{c} e^2 n\right ) (d+e x)^n}{2 a \left (\sqrt{-a}-\sqrt{c} x\right )}+\frac{\left (-\sqrt{-a} a c d e n+a^2 \sqrt{c} e^2 n\right ) (d+e x)^n}{2 a \left (\sqrt{-a}+\sqrt{c} x\right )}\right ) \, dx}{2 a c \left (c d^2+a e^2\right )}\\ &=-\frac{(d-e x) (d+e x)^{1+n}}{2 \left (c d^2+a e^2\right ) \left (a+c x^2\right )}+\frac{\left (e \left (\sqrt{-a} \sqrt{c} d-a e\right ) n\right ) \int \frac{(d+e x)^n}{\sqrt{-a}+\sqrt{c} x} \, dx}{4 a \sqrt{c} \left (c d^2+a e^2\right )}+\frac{\left (e \left (\sqrt{-a} d+\frac{a e}{\sqrt{c}}\right ) n\right ) \int \frac{(d+e x)^n}{\sqrt{-a}-\sqrt{c} x} \, dx}{4 a \left (c d^2+a e^2\right )}\\ &=-\frac{(d-e x) (d+e x)^{1+n}}{2 \left (c d^2+a e^2\right ) \left (a+c x^2\right )}+\frac{e \left (\sqrt{c} d+\sqrt{-a} e\right ) n (d+e x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac{\sqrt{c} (d+e x)}{\sqrt{c} d-\sqrt{-a} e}\right )}{4 \sqrt{-a} \sqrt{c} \left (\sqrt{c} d-\sqrt{-a} e\right ) \left (c d^2+a e^2\right ) (1+n)}+\frac{e \left (\sqrt{-a} \sqrt{c} d+a e\right ) n (d+e x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}\right )}{4 a \sqrt{c} \left (\sqrt{c} d+\sqrt{-a} e\right ) \left (c d^2+a e^2\right ) (1+n)}\\ \end{align*}

Mathematica [A]  time = 0.370314, size = 230, normalized size = 0.82 \[ \frac{(d+e x)^{n+1} \left (-\frac{\left (\sqrt{-a} c d e n-a \sqrt{c} e^2 n\right ) \, _2F_1\left (1,n+1;n+2;\frac{\sqrt{c} (d+e x)}{\sqrt{c} d-\sqrt{-a} e}\right )}{(n+1) \left (\sqrt{c} d-\sqrt{-a} e\right )}+\frac{\left (\sqrt{-a} c d e n+a \sqrt{c} e^2 n\right ) \, _2F_1\left (1,n+1;n+2;\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}\right )}{(n+1) \left (\sqrt{-a} e+\sqrt{c} d\right )}-\frac{2 a c (d-e x)}{a+c x^2}\right )}{4 a c \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(d + e*x)^n)/(a + c*x^2)^2,x]

[Out]

((d + e*x)^(1 + n)*((-2*a*c*(d - e*x))/(a + c*x^2) - ((Sqrt[-a]*c*d*e*n - a*Sqrt[c]*e^2*n)*Hypergeometric2F1[1
, 1 + n, 2 + n, (Sqrt[c]*(d + e*x))/(Sqrt[c]*d - Sqrt[-a]*e)])/((Sqrt[c]*d - Sqrt[-a]*e)*(1 + n)) + ((Sqrt[-a]
*c*d*e*n + a*Sqrt[c]*e^2*n)*Hypergeometric2F1[1, 1 + n, 2 + n, (Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)])/
((Sqrt[c]*d + Sqrt[-a]*e)*(1 + n))))/(4*a*c*(c*d^2 + a*e^2))

________________________________________________________________________________________

Maple [F]  time = 0.727, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( ex+d \right ) ^{n}x}{ \left ( c{x}^{2}+a \right ) ^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(e*x+d)^n/(c*x^2+a)^2,x)

[Out]

int(x*(e*x+d)^n/(c*x^2+a)^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{n} x}{{\left (c x^{2} + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x+d)^n/(c*x^2+a)^2,x, algorithm="maxima")

[Out]

integrate((e*x + d)^n*x/(c*x^2 + a)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (e x + d\right )}^{n} x}{c^{2} x^{4} + 2 \, a c x^{2} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x+d)^n/(c*x^2+a)^2,x, algorithm="fricas")

[Out]

integral((e*x + d)^n*x/(c^2*x^4 + 2*a*c*x^2 + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x+d)**n/(c*x**2+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{n} x}{{\left (c x^{2} + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x+d)^n/(c*x^2+a)^2,x, algorithm="giac")

[Out]

integrate((e*x + d)^n*x/(c*x^2 + a)^2, x)